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CONTRCL SYSTEMS DESIGN FOR LARGE FLEXIBLE
SPACE STRUCTURES

BY

S. M. Joshi! and A. S. Roberts, Jr.°

SUMMARY

Large, lightweight space structures represent the basic requirement
of many potentially important, new, space initiatives. This report
contains a description of :he research performed under grant NSG 1473, in
the area of control systen. design for large space structures (LSS).
Several approaches for the design of reduced-order LQG-type controllers
for LSS were proposed and evaluated using a continuous model of a long
free-free beam. Sufficient conditions were derived for the asymptotic
stability with this type of controller. A finite-element model of a
free-free-free-free square plate was obtained for use in control systems
studies. A method was developed for optimal damping enhancement in

LSS.

INTRODUCTION

Many of the peotentially important new space initiatives and mis-
sions which have been identified in reference 1 require large space
structures with dimensions which range from one hundred to several
thousands of meters. Example structures include very large microwave
reflectors, microwave antennas, antenna platforms, solar energy collectors,
radiators, solar sails, and telescopes. When the Space Shuttle becomes
operational, development of large space structures such as these will

become feasible.

1 Research Associate Professor, Old Dominion University Research
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Control systems design for structures of the size being contemplated
is a complex and challenging problem because weight and volume constraints
on the structural members will result in extremely low frequency bending
modes which are closely spaced in the frequency domain. Because of
stability and pointing requirements, a number of lower frequency modes
will probably fall within the bandwidth of the controller. Thus, the
active control of some of the structural modes appears unavoidable. The
tools of mndern control theory, such as Linear-Quadratic-Gaussiian (LQG)
control theory, can be effectively applied to the solution of the problem,
but not using the standard techniques. This is because the order of the
model raquired to accurately describe the structure, or plant, will be
too high to permit a practical solution using standard LQG theory with
full-order estimators and regulators. The feasible solution, therefore,
is almost certain to consist of regulators and estimators of order much

lower than the plant.

Unfortunately, stability of the system with lower order regulators
and estimators is not guaranteed because of the possible excitation of
uncontrolled or "residual" modes. In reference 2, the very descriptive
terms "controller spillover" and "observation spillover" were introduced
to describe the unwanted forcing of the residual modes by the control
inputs and the unwanted contribution of. the residual modes to the
observations respectively. If the residual modes have some natural
damping, the closed-loop system would be asymptotically stable in the
absence of either or both spillovers. However, spillover terms are

present in practice and must be considered in overall system performance.

This report consists of a summary of the research performed during
the period of the grant. For further information, readers are referred
to the papers and reports written by S. M. Joshi during the course of

the study.

——

REDUCED-ORDER LOG-CONTROLLERS

The objective of this research was to develop a controller design

methodology for large space structures (LSS). The first step towards




this objective was the selection of an appropriate model representing

the important dynamic characteristics of LSS while being sufficiently
simple to be mathematically tractable. These considerations led to

the choice of a uniform free-free beam as the basic model for developing
controller design methodology. Reference 3 consists of the development
of a model of a free-free beam. Some interesting properties of the mode

shapes were also derived in that report.

In reference 4, several approaches to the design of reduced order
controllers fcr large space structures were presented and discussed.
These approaches were based on LQG control theory and included truncation,
modified truncation regulators and estimators, use of higher order

estimators, and selective modal suppression. Also, the use of direct

sensor rfeedback, instead of a state estimator, was investigated for
some of the approaches. Numerical results were obtained for a long
free-free beam. In addition, sufficient conditions for asymptotic
stability were obtained in references 4 and 5. Reference 6 considered
a number of approaches to the LQG controller design for LSS, and also
proposed the use of "polynomial estimators" for explicit estimation of
the observation spillover. Results of reference 6 indicated that the
modified truncation regulator and estimator (MTR and MTE) would be
satisfactory design approaches. The direct sensor feedback (DSF)
implementation was also found to be superior under certain conditions.
The use of a higher order estimator was also found to be a potentially
useful method. However, the "polymonial estimator" method was not found

to be satisfactory.
FINITE ELEMENT MODEL OF A THIN PLATE

The research described above used a planar model of a free-free
F beam. However, a more realistic three-axis model of a large space

) structure is more desirable for controller design studies. Since

no such model was available, the task of developing a finite-element
model was undertaken. A 304.8 m x 304.8 m <« 0.254 cm (100 ft x 100

£t x 0.1 in. thick), square aluminum plate was selected for this

surpose. A finite-element model was developed using a 25 ¥ 25 mesh,




by applying the SPAR program for structural analysis. Modal frequency

and mode shape data for 44 structural modes (which represent about 80
kilowords) were stored on a magnetic tape, and were also printed out in
a book form. This model should be useful to the NASA researchers
working in the LSS control area. Figures 1 to 6 show some of the typical

mode shapes, and table 1 shows the modal frequencies.

MODAL DAMPING ENHANCEMENT IN LSS

It was found in the above described work that the closed-loop stability
of a LSS is heavily dependent on natural damping of the residual modes;
therefore, it is highly desirable to increase the damping of the residual
modes where possible. One method of achieving this is to use "member
dampers” (ref. 7). However, a systematic method is needed for the
selection of member damper gains. Therefore, a method for obtaining
optimal member damper gains was developed (see Appendix). This method
has significant potential wh2n used in conjunction with the methods

discussed above for the design of the primary controller.

CONCLUDING REMMRKS

The objective of this project was to develop controller design method-
ologies for LSS. To that effect, several approaches to the controller
design were proposed and discussed. It appears that the LQG controller
theory is very well suited as the basic design tool. Of the approaches
considered, the Modified Truncation Regulator and Estimator (MTR and
MTE) design was found to be potentially the best, especially when used
with Direct Sensor Feedback (DSF) implementation. The use of higher
order estimators has also shown promise. The importance of the natural
damping of the LSS to the closed-loop stability cannot be overemphasized.
The natural damping should be increased wherever possible. To that
effect, a method was developed for the design of optimal member damper

gains. Further investigation is needed in this area, and also in the

area of control actuator and sensor analysis and design.




APPENDIX: OPTIMAL MEMBER DAMPER CONTROLLER DESIGN
FOR LARGE SPACE STUCTURES

INTRODUCTION

Control systems design for large flexible space structures is a complex
and challenging problem because of their special dynamic characteristics.
Large space structures tend to have extremely low-frequency, lightly damped,
bending modes which are closely sp ced in *he frequency domain. Because of
pointing requirements, a number of lower-frequency modes will probably fall
within tne bandwiath of the primary controller, thus making active control of
some of the mcdes unavoidable. Since control of all the modes is impractical,
the primary controller will be reduced order. This introduces stability
problems because of observation and control spillover (refs. 4, 5, 8). The
stability of a system with a reduced-order controller is heavily dependent
on the natural damping of the residual (uncontrolled) modes. Therefore, it
is desirable to increase the damping of the residual modes where possible.

The member damper approach and the application of multiple member
dampers in an output velocity feedback configuration were discussed in
reference 7. The member damper approach includes local damping elements
which could consist of collocated actuators and velocity sensors. Each
actuator/sensor pair is configured as a single-loop control system and the
member dampers work independently of each other. In the output velocity
feedback configuration, all the sensor signals are distributed by a gain
matrix to interconnect all the actuators and sensors. This concept was
further investigated in references 9 and 10. It has been proved in these
references that direct velocity feedback (DVFB) cannot destabilize the

system. Such controllers may be used in conjunction with a conventional
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(modern) active controller, and have the potential to effect significant

improvement in the overall performance.

Selection of velocity feedback gains for individual member dampers is an
important part of the design. The root locus technique may be used for this
purpose; however, this could be a complex task, especially if a large number
of actuators are used. In this note, the problem of selecting velocity feedback
gains is formulated as an optimal output feedback regulator problem, and
necessary conditions are derived for minimizing a quadratic performance function.

The special structure of the gain matrix (i.e., diagonal) is taken into account,

and the knowledge of process noise and sensor noise is used to advantage.
EQUATIONS OF MEMBER DAMPER CONTROLLERS

The structural model of a large space structure can be (approximately)
described by the equations:

. T
- - 1
9% * Doqo * Aoqo oo f (1)

-

) 0o
where q is the no-dimcnsional vector of modal amplitudes; ¥ is the
m X n, ""mode shape' matrix; f is the m X 1 generalized force vector
(components of f represent applied forces or torques); ¥s is the m X 1

vector of generalized displacements (linear and angular) at the m points of

application (Ql, Roes 1 1@ I im) of the generalized forces; Do is the inherent

-

damping matrix, and A is the diagonal matrix of squared natural frequencies.
o £

These equations describe truncated normal-coordinate continuous models, or

finite-element models.
If a member damper is connected between two points, equal and opposite

forces (torques), proportional to the sensed relative velocity (relative

&}
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angular velocity) between the points, are applied at the points. Thus, if

a single-member damper is connected between points 11 and %,, the
equations are
" . f
= = [¢. - 3
q, *+ D a, + Aa, = [¢, ¢,] [_f] (¢, - ¢,] f (3)

: : . T ' .
where the n, -vector ¢i is the ith column of the @0 matrix, and f is the

scalar force.

£ogy ¥, (4)

I S
vy = (@ = ¢,) q (5)

where g, is the DVFB gain (g1 and y, are scalars),

1

Substitution of (4) and (5) into (3) yields

o T, ® :

qo ' (Do - gl wl wl ) qo : Aoqo =0 (6)
where

Y, =6 - b, (7)

If p member dampers are used, the closed-loop equation becomes

P
Go* (g = ) g ¥ ¥ ) a4y Ay =0 (8)

i=1
where gy is the feedback gain and by the effective input matrix [similar
to eq. (7)] for the ith damper. If g < 0(i=1,2,...,p), and Do >0,
then the effective damping matrix (coefficient matrix of ao in eq. 8) is
positive semidefinite, and the system is stable in the sense of Lyapunov;
if the effective damping matrix is positive definite, the system is
asymptotically stable (ref. 9). It should be noted that this is only a
sufficient condition, and the system can be asymptotically stable even thoug

the effective damping matrix is only positive semidefinite.




OPTIMAL OUTPUT FEEDBACK FORMULATION

n

or

he purpose of controller design, n of the n, modes of the structure
are considered. Thus, the '"'design model'" is of order 2n, Although the member-
damper control system is based on the lower order ''design model," it cannot
destabilize the higher order model, Therefore, this design does not suffer

from the problems associated with the use of reduced-order models in conventional
optimal regulator and estimator design. Let q denote the modal amplitude
vector for the modes in the '"'design.' The state equations for the system under

consideration, including process noise and sensor noise, may be written as:

X = Ax + Bu + v (9)
z-ch.qd-h':Cx-P‘d (10)
where
q 0 I 0
X ‘= . ’ A= N B = (11)
4 2nxa -A -BDJ onx2n Y4 2nxp
C=[0 ) b= (v, ¥ v_] (12)
pX2n ’ 1 *Y2 " ° n’'nXp

and where x 1is the 2nXl1 state vector, u is the pXl vector of effective
inputs, and v and w are zero-mean, white process noise and measurement noise
vectors with covarianée intensities V and W. It should be noted that

C = BT. It is necessary to obtain an input of the type

u=06z =G (Cx +w) (13)

where

R

|
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cessary conditicns for the minimication o

J in equation

(15), with constraints of equations (9), (10), and (13), are given by

.

T -] T
g=-[R* (BT 2B) « we (87 PB))"" a(a'zre) (18)
i
(A +8G87)TP + P(A + 3GBT) +Q + BGRGB® = 0 (19)
(A + BGBT)Z + S(A + BGBT)T & V + BGWGB' = 2 (20)

where P and I are 2nX2n symmetric matrices.

Proof.- The structure of the proof is very similar <o that used for the general
optimal output feedback problem (ref. 11). (It should be noted that the proof
given in ref. 1l needs slight modification in light of ref. 12, although the end
result is the same). The only difference is that the derivative of the Hamilto-
nian with respect to the vector g (rather than the matrix G) i> equated to

zero. The following easily proved properties of a matrix trace are used (G is

a diagonal matrix, a and 8 are square matrices of compatible dimension):

d . (Ga GB) = 3 [ : AP— - P . ;)T) (21)
= Tr [Ga GB] = =— [g (a* 8)g] a* B (@ * 8 ’ g (2
)4 0

3 = Ao )
3 Tr [Ga] = 4(a) (22

The fact that C = BT is also used.

It should be noted that, as in the case of the general optimal output
feedback prcblem, the theorem does not guarantee the existence of a g that
will make the svstem asymtotically stable, although the necessary conditions
assume the existence. Indeed, the performance function of equation (15)
will be meaningful only if such a g exists.

The optimal gain vector g :may be computed using the alger

)y
ot
b
3
U
117
o3

in reference 11, using equation (18) or using a numerical minimization

method (such as Davidon-Fletcher-Powell).

10




CONCLUDING REMARKS

Necessary conditions were obtained for minimizing a quadratic performance
function under the framework of the member damper concept. Knowledge of noise
covariances is used in the design. The method presented offers a systematic
approach to the uc.ign of a class of controllers for enhancing structural
damping in large space structures., This type of controller has significant
potential if used in conjunction with a reduced-order optimal controller
that is designed to control rigid-body nodes and some selected structural

modes,

11
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Figure 3. Mode No. 9.




Figure 4. Mode No. 20.




Figure 5.

Mode No.

33.

»

S "




-

— eailila
KR j”‘fi"@?’g,& [\
\" -‘;%'\“;‘“‘ \&“ HIT Ao

- %
m .

L)
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